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Abstract
Typically, monitoring quality characteristics of very personalized products is a difficult task due to the lack of experimental 
data. This is the typical case of processes where the production volume continues to shrink due to the growing complexity 
and customization of products, thus requiring low-volume productions. This paper presents a novel approach to statistically 
monitor defects-per-unit (DPU) of assembled products based on the use of defect prediction models. The innovative aspect 
of such DPU-chart is that, unlike conventional SPC charts requiring preliminary experimental data to estimate the control 
limits (phase I), it is constructed using a predictive model based on a priori knowledge of DPU. This defect prediction model 
is based on the structural complexity of the assembled product. By avoiding phase I, the novel approach may be of interest to 
researchers and practitioners to speed up the chart’s construction phase, especially in low-volume productions. The descrip-
tion of the method is supported by a real industrial case study in the electromechanical field.

Keywords  Quality control · Defect prediction · Control charts · Assembly · Low-volume production

1  Introduction

Nowadays, control charts have become an essential part of 
the quality control activities of most organizations to detect 
the presence of special causes of variation in a variety of 
manufacturing processes [1–4].

Traditional control charts require a preliminary set of 
experimental data related to the process to be constructed 
(phase I) [5]. However, there can be situations in which 
collecting this data set can be time-consuming, costly, and 
difficult to obtain. This is the typical case of low-volume 
productions, for which collecting a reasonable number of 
samples to set valid control limits may unacceptably delay 
monitoring [6–8].

The purpose of this paper is to propose a novel approach 
to statistically control the process of assembled products 
through the use of a control chart for nonconformities per 
unit (DPU-chart) based on defect prediction models.

In detail, if a defect prediction model based on a priori 
knowledge of the defectiveness occurring in the product is 
available, it can be used to construct a DPU-chart by avoid-
ing the traditional implementation of phase I.

In this study, assembly processes are addressed in detail. 
In particular, a defect prediction model developed in a recent 
study by the authors [9] is used to set up a control chart to 
monitor DPU detected in each workstation of a manufactur-
ing process. This model relies on the relationship between 
DPU and product structural complexity.

The DPU-chart, despite the conceptual similarity with 
traditional u-chart, totally differs in its design. This control 
chart does not require a process analysis and a preliminary 
experimental data collection (phase I). As a result, the meth-
odology proposed could be of interest to researchers and 
practitioners that need to speed up the phase of construction 
of the chart. In particular, as mentioned, the proposed DPU-
chart could be very attractive for low-volume productions.

The proposed method is applied to a real-world case study 
related to the production of wrapping machines assembly 
for the packaging of palletized load, whose total number of 
machines produced in a year generally reaches only a few 
dozen units.

The remainder of the paper is organized into five sec-
tions. “Sect. 2” reviews the prediction model for assembly 
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defects. In “Sect. 3,” the DPU-chart is presented. “Sect. 4” 
presents a case study concerning the practical application of 
the proposed control chart in the low-volume production of 
wrapping machines. “Sect. 5” provides some guidelines for 
the practical application of the DPU-chart. “Sect. 6” sum-
marizes the original contributions of this research, focus-
ing on its implications, limitations, and possible future 
developments.

2 � Conceptual background: defect prediction 
model for assembly processes

A large number of studies in the literature use assembly 
complexity to predict product defects [8, 10–20]. These 
models were developed for predictive and quality improve-
ment purposes in several industrial fields, ranging from the 
electromechanical to the automotive sector. Most of them 
refer to mass productions, involving hundreds or thousands 
of pieces produced per month [10, 11, 13–17, 19]. Recently, 
the authors focused on identifying appropriate defect pre-
diction models in assembly processes [9, 21–24] accord-
ing to the product structural complexity paradigm proposed 
by Alkan [25] and Sinha [26]. The same model was also 
recently adopted to help inspection designers in the inspec-
tion process planning from the early design phases [9].

In detail, the product assembly process is decomposed 
into a series (m) of process steps, also called workstations, 
following specific operation standards. Each i-th workstation 
(i = 1, …, m) is made up of several elementary operations, 
defined as the minimum components of a specific task, as 
schematized in Fig. 1.

It is assumed that errors made by operators in performing 
a certain elementary operation in a workstation may intro-
duce at most one defect in the product that can be inter-
preted as a unique “macro-defect.” Accordingly, the totality 
of the possible defects within a certain workstation is at most 
equal to the total number of elementary operations in the 
same workstation. In practical applications, such assump-
tion is reasonable when, for each i-th workstation, a refined 
segmentation of elementary operation is performed. Each 
sub-assembly coming from a workstation, i.e., a worksta-
tion-output, can be examined by inspectors using quality 
control activities appropriate according to the specific type 
of defects, e.g., dimensional verifications, visual checks, or 
mechanical tests.

To clarify these last concepts, a pedagogical example is 
proposed. Consider a simple assembly process composed by 
a single workstation, in which a bolt (with a nut) is manu-
ally tightened with a wrench. Table 1 shows the performed 
elementary operations with the defects that may be intro-
duced. In this case, the number of elementary operations is 

Fig. 1   Schematic of the assem-
bly process of a product [9, 24]
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9 and, accordingly, the total number of possible defects that 
can occur in the workstation is at most 9.

Verna et  al. [9, 24] showed that the total number of 
defects detected in each i-th workstation divided by the num-
ber of produced units, i.e., the defects per unit related to the 
i-th workstation ( DPUi ), can be expressed as a function of 
product complexity, as follows:

where DPUi is the defect per unit (DPU) in the i-th worksta-
tion and Ci is the structural complexity associated to the i-th 
workstation, evaluated according to the approach proposed 
by Alkan [25] and Sinha [26], shown in Eq. (2).

The three components of the structural complexity, C1,i , 
C2,i , and C3,i , are described below.

C1,i is defined as the handling complexity of the i-th work-
station and is the sum of complexities of individual product 
parts in each i-th workstation. It is calculated as shown in 
Eq. (3):

where, for each i-th workstation (i = 1, …, m), Ni is the total 
number of product parts and �pi is the handling complexity 
of part p, which can be approximated by the standard han-
dling time [25].

C2,i represents the complexity of connections related to 
the i-th workstation. It is the sum of the complexities of pair-
wise connections existing in the product structure assembled 
in the i-th workstation, as follows:

(1)DPUi = f (Ci)

(2)Ci = C1,i + C2,i ⋅ C3,i

(3)C1,i =

Ni
∑

p=1

�pi

(4)C2,i =

Ni−1
∑

p=1

Ni
∑

r=p+1

�pri ⋅ Apri

where �pri is the complexity in achieving a connection 
between parts p and r of the i-th workstation, and Apri defines 
the binary adjacency matrix of the i-th workstation. Note 
that the connection between parts is considered only once. In 
detail, �pri can be approximated by the standard completion 
time of the connection between parts p and r in isolated con-
ditions. Besides, Apri represents the connectivity structure of 
the system, as indicated in Eq. (5):

Finally, C3,i is the topological complexity of the i-th work-
station and represents the complexity related to the architec-
tural pattern of the assembled product. It can be obtained 
from the matrix energy EAi of the adjacency matrix related 
to the i-th workstation, which is designated by the sum of 
the corresponding singular values �qi [26, 27], as follows:

where EAi stands for graph energy (or matrix energy) related 
to i-th workstation and Ni stands for the number of parts 
in the i-th workstation (i.e., the number of nodes). As the 
adjacency matrix of each i-th workstation is a symmetric 
matrix of size Ni with the diagonal elements being all zeros, 
the singular values corresponds to the absolute eigenvalues 
of the adjacency matrix [26, 28].

To clarify how the structural complexity associated to 
the i-th workstation can be obtained, a simple example is 
given. Consider an assembly process made up of a single 
workstation in which a simple product composed of N = 6 
parts (w, j, k, x, y, and z) is assembled, as represented in 
Fig. 2. For the sake of simplicity, suppose that the 6 parts, 
as well as the connections between the parts, are identical. 
The standard handling time of each p-th part is �p = 10 s 
(with p = 1, …, 6), while the standard completion time of 
the connection between parts p and r is �pr = 20 s (with 

(5)
Apri =

⎧

⎪

⎨

⎪

⎩

1 if there is a connection between p and r in the i − th workstation

0 otherwise

(6)C3,i =
EAi

Ni

=

∑Ni

q=1
�qi

Ni

Table 1   Subdivision of a 
workstation, i.e., the manually 
tightening of a bolt with a 
wrench in an apparatus, into 
elementary operations with 
indication of possible defects

Elementary 
operation no

Elementary operation description Possible defect

1 Reach for bolt Bolt is confused with other fasteners
2 Grasp at bolt with the left (or right) hand Fall of the bolt
3 Move the bolt to the apparatus Bolt not moved to the exact location
4 Position the bolt in the hole Bolt positioned out of the hole
5 Grasp the nut with the right (or left) hand Fall of the nut
6 Position the nut on the bolt thread Nut wrongly positioned on the thread
7 Grab the wrench with the right (or left) hand Fall of the wrench
8 Position the wrench on the nut Wrench wrongly positioned on the nut
9 Turn the wrench to tighten the nut Damage to the nut
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p = 1, …, 5 and r = p + 1, …, 6). According to Eq.  (3),  
the handling complexity is C1 =

∑6

p=1
�p = 60 s = 1 min. 

The complexity of connections is, by implementing 
Eq.  (4), C2 =

∑5

p=1

∑6

r=p+1
�pr ⋅ Apr = 100  s = 1.67  min, 

since there are 5 connections between the parts. From the 
adjacency matrix A, shown in Fig. 2, the related graph 
energy is computed as the sum of its singular values that 
are the absolute eigenvalues of A in case of symmetric 
matrix. In detail, the eigenvalues of the adjacency matrix 
A are − 2.24, 2.24, and 0 with multiplicity 4. Thus, being 
the singular values the absolute eigenvalues of A, then 
EA = 2.24 ⋅ 2 + 0 ⋅ 4 = 4.48 . According to Eq.  (6), it is 
obtained that C3 =

EA

N
=

4.48

6
= 0.75 . Finally, by applying 

Eq. (2), the structural complexity is C = C1 + C2 ⋅ C3 = 2.25 
min.

The defect prediction model shown in Eq. (1), depending 
solely on physical design information, is beneficial, espe-
cially in the early design stages, when real production data 
or the physical mockup of the product is not available. This 
model has been recently applied by the authors in the assem-
bly of a low-volume production of wrapping machines, 
showing that the relationship between complexity and DPU 
follows a power-law relationship, as follows [9, 24]:

where a and b are two regression coefficients estimated 
by nonlinear regression. For the assembly of wrapping 
machines, the coefficients obtained are a = 3.05 ⋅ 10

−3 and 
b = 1.58 , as will be described in “Sect. 4.”

3 � DPU‑chart

Considering the framework described in “Sect.  2,” the 
approach proposed in this study aims to statistically control 
the process by designing a control chart based on a defect 
prediction model. In detail, the proposed control chart is 

(7)DPUi = a ⋅ (Ci)
b = a ⋅ (C1,i + C2,i ⋅ C3,i)

b

designed to monitor DPUi values, i.e., DPU occurring in 
each i-th workstation of the process (i = 1, …, m, see Fig. 1) 
in order to detect out of control situations. Accordingly, this 
chart can be categorized as a control chart for defects per unit 
(u-chart). Given xi total defects in a sample of ni inspected 
units in a certain i-th workstation, the average number of 
defects per inspection unit, DPUi , can be defined as:

where xi is the average number of defects (Poisson distrib-
uted random variable [5]).

In the proposed DPU-chart, the in-control mean value 
DPUi is set by a suitable defect prediction model. In the case 
of electromechanical products, the power-law relationship 
shown in Eq. (7) can be adopted to this aim. Therefore, for 
each i-th workstation of the process (i = 1, …, m), the param-
eters of the control chart for the average number of defects 
per unit ( DPUi ) may be derived as follows:

where DPUi , i.e., the in-control mean value of the DPU-
chart, is modeled by the power-law relationship of Eq. (7).

An example of representation of the control chart for 
DPUi is provided in Fig. 3.

In “Sect. 4,” the proposed methodology is applied to a 
real-life case study of a company specialized in the design 
and manufacture of wrapping machines. The case study will 

(8)DPUi =
xi

ni

(9a)UCLDPUi
= DPUi + 3 ⋅

√

DPUi

ni

(9b)CLDPUi
= DPUi

(9c)LCLDPUi
= DPUi − 3 ⋅

√

DPUi

ni

Fig. 2   Connectivity structure of a simple product composed of six parts and its associated adjacency matrix A 
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exemplify the application of the approach and will highlight 
its practical relevance.

4 � Practical case study

The methodology proposed in “Sect. 3” is applied to the low-
volume production of rotating ring wrapping machines for the 
packaging of palletized loads, produced by an Italian company 
(Tosa Group S.p.A.). Typically, each year, about 50 machines 
are assembled and each of them is highly customized. This 
study focuses in particular on the assembly of a single part of 
the rotating ring wrapping machine, i.e., the pre-stretch device, 
illustrated in Fig. 4. The main reason is that, although each 
machine differs from the others in some details, this device is 

common to all assembled machines [20]. The three functions 
performed by a pre-stretch device are as follows: (i) pulling/
unwinding, (ii) pre-stretch and positioning of the plastic film, 
and (iii) performing the necessary number of windings.

The assembly process of the pre-stretch device can be 
subdivided into m = 29 workstations, listed in Table 2. In this 
case study, a workstation is meant as an assembly step in 
which elementary operations are performed, whose output 
is a sub-assembly, i.e., the workstation-output. As shown in 
Table 2, in the first 9 workstations, the assembly is per-
formed on the bench by the operator, while in the last 20 
workstations the subassemblies are assembled on the frame 
plate. Each workstation is composed of elementary opera-
tions that have definite start and end points and are repeat-
able regularly throughout the working day [29]. The number 
of elementary operations in each workstation is also shown 
in Table 2. The latter, moreover, reports the nominal values 
of DPU occurring under stationary process conditions in 
each workstation (nominal DPUi) that were obtained by 
drawing on the company historical data [20, 23]. These data 
were considered the reference values of the average defec-
tiveness rate of the assembly process in optimal working 
conditions and were used to develop a defect prediction 
model. In detail, according to the model described in 
“Sect. 2,” the structural complexity related to each i-th work-
station, Ci, is calculated from the complexities C1,i , C2,i , and 
C3,i , listed in Table 2, by applying Eq. (2). To better clarify 
this step, we propose the calculation of the complexity coef-
ficients for the workstation no. 14 (one of the simplest work-
station), related to the transmission system of motor no. 1 
assembly. In such a workstation, two components are assem-
bled: the driven wheel and the drive belt. The standard han-
dling time of the two parts is 0.14 min and the time for 
connecting them is 0.44 min. Accordingly, by implementing 
Eqs. (3) and (4), respectively, it is obtained C1 =

∑2

p=1
�p = 

Fig. 3   Example of representation of the DPU-chart

Fig. 4   Rotating ring wrapping machine produced by Tosa Group S.p.A. (Italy) with a focus on the pre-stretch device
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0.14 min and C2 =
∑1

p=1

∑2

r=p+1
�pr ⋅ Apr = 0.44 min, as 

reported Table 2. The adjacency matrix of the two compo-

nents is A = 
(

0 1

1 0

)

 . The two different eigenvalues of A are 

1 and − 1. Thus, the graph energy EA is computed as the sum 
of its singular values that are the absolute eigenvalues of A 
in case of symmetric matrix: EA = 1 + 1 = 2 . According to 

Table 2   Subdivision of the assembly process of the pre-stretch device of wrapping machines into workstations (WS), defect prediction model’s 
variables (see Eq. (7)), nominal DPUi and DPUi predicted by Eq. (10)

No. WS WS description No. elementary 
operations

C1,i(min) C2,i(min) Ni C3,i Ci(min) Nominal DPUi Predicted DPUi

Bench assembly
1 Motor no. 1 bench assembly 6 2.19 5.11 14 0.60 5.27 0.0364 0.0424
2 Motor no. 2 bench assembly 6 2.28 5.33 14 0.59 5.41 0.0364 0.0443
3 Support plate of motor no. 2 bench 

assembly
3 1.19 4.77 10 0.80 5.01 0.0182 0.0391

4 Spindle bench assembly 3 0.78 3.14 3 0.25 1.57 0.0000 0.0062
5 Rubber tires bench assembly 12 1.24 11.13 14 0.47 6.47 0.1091 0.0587
6 Idle rolls bench assembly 12 1.63 6.53 12 0.62 5.68 0.0545 0.0478
7 Rubberized pads bench assembly 3 0.73 2.91 4 0.25 1.46 0.0000 0.0055
8 Belt tensioner device bench assembly 3 0.25 2.22 8 1.90 4.47 0.0364 0.0327
9 Driven wheels of transmission system 

bench assembly
2 0.08 0.33 4 0.25 0.16 0.0000 0.0002

Assembly on the frame plate
10 Pre-stretch frame plate preparation 3 0.99 3.97 11 0.75 3.97 0.0182 0.0271
11 Rubber rollers on pre-stretch frame plate 

assembly
4 1.07 4.27 26 0.88 4.83 0.0182 0.0369

12 Idle rollers on pre-stretch frame plate 
assembly

6 1.19 4.77 39 0.83 5.15 0.0182 0.0409

13 Motor no. 1 on frame plate assembly 1 0.74 2.96 5 0.25 1.48 0.0000 0.0057
14 Transmission system of motor no. 1 

assembly
2 0.14 0.44 2 1.00 0.58 0.0000 0.0013

15 Motor no. 2 on frame plate assembly 4 1.73 6.90 16 0.48 5.01 0.0182 0.0391
16 Transmission system of motor no. 2 

assembly
2 0.09 0.80 2 3.14 2.60 0.0364 0.0139

17 Motor no. 1 bracket on pre-stretch frame 
plate assembly

1 0.20 0.78 3 0.25 0.39 0.0000 0.0007

18 Belt tensioner on pre-stretch frame plate 
assembly

2 0.18 1.64 5 1.97 3.41 0.0364 0.0213

19 Transmission system of motor no. 1 
calibration

2 1.74 4.05 12 0.69 4.55 0.0364 0.0336

20 Transmission system of motor no. 2 
calibration

2 1.90 4.43 12 0.66 4.81 0.0364 0.0366

21 Spindle preparation for assembly on pre-
stretch frame plate

2 0.45 1.79 15 0.25 0.90 0.0000 0.0026

22 Spindle group on pre-stretch frame plate 
assembly

6 1.36 12.23 34 0.44 6.730 0.0364 0.0625

23 Rubber pads on pre-stretch frame plate 
assembly

2 0.47 1.89 5 0.25 0.94 0.0000 0.0028

24 Motor assembly no. 1 final steps 1 0.12 1.04 3 2.88 3.09 0.0545 0.0182
25 Motor assembly no. 2 final steps 1 0.12 1.08 3 2.77 3.11 0.0545 0.0184
26 Spindle release lever bench assembly 1 0.24 0.95 6 0.25 0.48 0.0000 0.0009
27 Spindle release lever on pre-stretch frame 

plate assembly
3 0.80 7.20 6 0.25 2.60 0.0000 0.0139

28 Compensation arm bench assembly 9 1.26 11.32 20 0.60 8.05 0.0909 0.0830
29 Compensation arm on pre-stretch frame 

plate assembly
3 0.56 5.00 4 0.25 1.81 0.0000 0.0078
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Eq. (6), C3 =
EA

N
=

2

2
= 1 . Finally, by Eq. (2), the structural 

complexity of this workstation is C = C1 + C2 ⋅ C3 = 
0.58 min.

Different models were tested and compared to relate 
DPUi versus Ci. The adequacy of such models was assessed 
based on the analysis of regression residuals and of the S 
value as a measure of goodness-of-fit [30, 31]. A power-
law curve was found to be the best model to define such 
a relationship, as discussed in “Sect. 2.” Accordingly, the 
defect prediction model, obtained according to Eq. (7), is 
the following [9, 24]:

Table 2 finally reports the DPUi values predicted by 
Eq. (10).

The average number of defects per unit in each worksta-
tion, DPUi, is tracked by inspectors on a bimonthly basis. 
In detail, every 2 months, 9 devices are assembled by the 
company in each i-th workstation and, accordingly, the sam-
ple size is ni = 9. Each i-th workstation-output (i = 1, …, 29) 
is examined by inspectors that record the total number of 
defects occurring during each bimester. Inspectors perform 
various quality control activities to detect these defects, 
which may require specific equipment depending on the 
workstation-output [9]. The adopted inspection controls are 
listed in Table 3. Then, for all the workstations, the recorded 
defects are divided by the number of devices produced in 
each bimester to obtain the average defects per unit. The 
most recent DPUi values related to the last 12 bimesters 
(2 years) are reported in Table 4.

The DPU-chart developed in “Sect. 3” can be used to mon-
itor the process. Adopting the DPU prediction model greatly 
speeds up the construction of the control chart. Indeed, since 
the preliminary collection of experimental data (phase I) is 
not necessary for the new approach, a time saving of several 
months is achieved (considering that data for 50 machines 
are obtained in one production year). In detail, according to 
Eqs. (9a), (9b), and (9c), the parameters of each DPU-chart 
are derived and are reported in Table 4. Since LCLDPUi

 < 0 
for each i-th workstation, it is set LCLDPUi

 = 0 for the chart.
A DPU-chart is obtained for all the workstations. As an 

example, the DPU-chart for workstation no. 1 is provided in 
Fig. 5. As can be seen, the workstation 1 appears in statisti-
cal control.

When some points fall outside of the control limits and/or 
points behave in a systematic or nonrandom manner, there 
is evidence that the process is out of control, and investiga-
tion and corrective actions are required to find and eliminate 
the assignable causes responsible for this behavior. As an 
example, from the data in Table 4, a lack of statistical con-
trol is exhibited for workstations no. 10 and 26. In detail, 
the chart for workstation 10 highlights an increasing trend 

(10)DPUi = 3.05 ⋅ 10
−3

⋅ (Ci)
1.58

of the DPU values from the bimester no. 8, and two obser-
vation (i.e., corresponding to bimester no. 10 and 12) are 
signaled as out of control points, as shown in Fig. 6. On the 
other hand, for workstation no. 26, five out of control DPU 
values are detected by the chart, corresponding to bimester 
no. 4, 8, 9, 10, and 11 (see Fig. 7). In order to investigate the 
causes leading to the anomalous defectiveness found in the 
two workstations, specific and accurate checks were carried 
out. Regarding workstation 10, the critical assembly opera-
tion was the finishing of the frame plate holes, performed 
by the operator with a manual grinding machine. The inad-
equate training of the operator was identified as the variation 
cause. On the other side, the root cause of the workstation 
26 behavior was a batch of an out-of-tolerance mechanical 
component purchased from an external supplier used for 
assembling the spindle release lever.

5 � Application guidelines

The proposed DPU-chart could be very useful when a defect 
prediction model is available. Otherwise, some evaluations 
ought to be made. In detail, the following guidelines should 
be considered before designing a DPU-chart:

•	 Case (i): a model for predicting DPU is available.

If a suitable model for predicting DPU is available, adopt-
ing a DPU-chart can be considered more convenient 
than a traditional u-chart, avoiding the implementation 
of phase I and directly deriving control limits from prior 
product knowledge. The prediction model is certainly 
closely linked to the specific manufacturing field. In the 
case of assembly processes, the prediction model frame-
work described in “Section 2” can be adopted, and Eq. 
(7) can be considered a suitable equation to model DPUs 
in various applications. However, the regression coeffi-
cients a and b (see “Section 2”) may vary according to the 
specific industrial field. As aforementioned, in the case of 
wrapping machines, these coefficients are known from a 
previous study [24]. This model for wrapping machines 
can, to a certain extent, be preliminary extended to other 
similar applications in assembly production, particularly 
electromechanical products.

Otherwise, in sectors other than the electromechani-
cal, alternative prediction models may be adopted, 
with settings based on literature data and/or previous 
experience (see, e.g., defect/fault prediction models for 
software applications [32, 33]).

•	 Case (ii): a predictive model is not available.

In such a case, the interest in the proposed DPU-charts 
may be less evident, having to replace phase I with the 
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construction of the defect model. As a consequence, it 
is necessary to evaluate case by case if it is more con-
venient to implement phase I or to build a new defect 
prediction model.

Referring to the case (i), to empirically validate the suit-
ability of the prediction model developed for wrapping 
machines — see Eq. (10) — to other electromechanical 
products, a comparison is performed with a similar applica-
tion related to the assembly of hardness testing machines. 

The new proposed case study concerns the assembly of 
the AFFRI® LD 3000 AF machine and, in particular, its 
machine head. As described in a previous paper [8], the 
assembly of machine head of hardness testing machines 
may be subdivided into 18 workstations. For each worksta-
tion, the DPUi are reported in Table 5. To build the predic-
tion model, the structural complexity Ci is used as predic-
tor, according to the Alkan [25] and Sinha [26] model (see 
“Sect. 2”). The obtained values are listed in Table 5. By 
applying Eq. (7), the regression model coefficients, denoted 

Table 3   Type and description of the controls performed in the workstations of the pre-stretch device to detect defects [9]

No. WS Control type Control description

1 Visual and manual Cleaning of motor shaft 1, alignment of groups pulley-motor shaft 1 and clamping ring-motor shaft 
1

2 Visual, manual, and dimensional Cleaning of motor shaft 2, correct dimensions of the groups shrink disk-crankshaft 2 and pulley-
crankshaft 2 by using caliber and bench vice

3 Visual and manual Surface cleaning of motor support plate 2 and correct assembly of the upper and lower plate
4 Visual, manual, and mechanical Presence of all the components for the spindle subassembly and spindle spring operation
5 Visual, manual, and mechanical Cleaning of the wheeled roller shaft and correct rotation of the wheeled roller assembly
6 Visual, manual, and mechanical Cleaning of idle rolls shaft and correct rotation of idle rollers assembly
7 Visual and geometric Correct positioning of the rubber pad assembly 1 and 2 and hexagonal support of the rubber pad 

assembly 1 and 2
8 Visual and mechanical Alignment of the belt tensioning device group and correct rotation of the belt tensioning device 

roller
9 Visual and mechanical Penetration of the protective on the surface of the driven wheels and correct positioning of the 

clamping rings in the transmission-driven wheels
10 Visual Esthetic appearance of the surface plate of the pre-stretch frame
11 Mechanical and geometric Correct rotation of the rubber rolls and alignment of the rubber rollers on the pre-stretch frame plate
12 Mechanical and geometric Correct idle roller rotation and alignment of the idle rollers on the pre-stretch frame plate
13 Mechanical Correct tightening of the motor bolts 1 on the frame plate
14 Visual Correct positioning of the components
15 Visual and mechanical Correct tightening of motor bolts 2 on the frame plate
16 Visual Correct positioning of components
17 Visual Correct positioning of the motor casing 1
18 Mechanical and geometric Correct alignment of the belt tensioner assembly and rotation of the belt tensioning device roller
19 Mechanical and geometric Movement of the motor drive belt 1
20 Mechanical and geometric Movement of the motor drive belt 2
21 Visual and mechanical Check the number of screws removed from the component and correct operation of the internal 

spindle spring
22 Mechanical and geometric Correct spindle rotation on the pre-stretch frame plate and alignment of the spindle assembly on the 

pre-stretch frame plate
23 Geometric Correct alignment of the pads on the pre-stretch frame plate
24 Manual and mechanical Correct operation of the motor 1, final check of the motor 1 drive belt tension and final alignment 

check of the motor 1 transmission assembly
25 Manual and mechanical Correct operation of the motor 2, final check of the motor 2 drive belt tension and final alignment 

check of the motor 2 transmission assembly
26 Visual and mechanical Alignment and correct movement of spindle release lever assembly
27 Mechanical and geometric Correct movement and alignment of the spindle release lever on the pre-stretch frame plate
28 Visual, geometric, mechanical, 

and dimensional
Correct rotation of the compensation arm roller and alignment of the cam system by using caliber, 

metallic ruler, and gauge blocks
29 Visual and mechanical Correct movement of the compensation arm assembly on the pre-stretch frame plate and correct 

rotation of the compensation arm roller
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Table 4   DPUi values related to each i-th workstation of the pre-stretch device tracked on a bimonthly basis. Out of control observations are writ-
ten in bold type

WS Sample number (bimester) LCLDPUi
CLDPUi

UCLDPUi

1 2 3 4 5 6 7 8 9 10 11 12

1 0.0000 0.2222 0.1111 0.0000 0.0000 0.1111 0.1111 0.2222 0.0000 0.1111 0.1111 0.0000 0.0000 0.0424 0.2482
2 0.0000 0.1111 0.0000 0.1111 0.0000 0.0000 0.0000 0.0000 0.1111 0.0000 0.0000 0.1111 0.0000 0.0443 0.2546
3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0391 0.2368
4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0062 0.0851
5 0.0000 0.2222 0.1111 0.0000 0.1111 0.2222 0.1111 0.2222 0.0000 0.1111 0.1111 0.1111 0.0000 0.0587 0.3009
6 0.1111 0.1111 0.0000 0.1111 0.0000 0.0000 0.1111 0.1111 0.0000 0.1111 0.2222 0.0000 0.0000 0.0478 0.2664
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0055 0.0799
8 0.0000 0.1111 0.0000 0.0000 0.1111 0.0000 0.0000 0.0000 0.1111 0.0000 0.0000 0.1111 0.0000 0.0327 0.2135
9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0134
10 0.0000 0.0000 0.1111 0.1111 0.0000 0.0000 0.1111 0.0000 0.1111 0.2222 0.1111 0.4444 0.0000 0.0271 0.1916
11 0.0000 0.0000 0.0000 0.1111 0.0000 0.1111 0.0000 0.2222 0.0000 0.0000 0.0000 0.0000 0.0000 0.0369 0.2290
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0409 0.2431
13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0057 0.0810
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0013 0.0373
15 0.0000 0.0000 0.1111 0.0000 0.0000 0.0000 0.0000 0.0000 0.2222 0.0000 0.0000 0.1111 0.0000 0.0391 0.2370
16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1111 0.0000 0.0000 0.0000 0.0000 0.0000 0.0139 0.1317
17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007 0.0270
18 0.0000 0.0000 0.1111 0.1111 0.0000 0.0000 0.1111 0.0000 0.0000 0.0000 0.1111 0.0000 0.0000 0.0213 0.1671
19 0.0000 0.1111 0.0000 0.0000 0.1111 0.0000 0.0000 0.1111 0.0000 0.0000 0.1111 0.0000 0.0000 0.0336 0.2169
20 0.1111 0.0000 0.0000 0.0000 0.0000 0.1111 0.0000 0.0000 0.1111 0.0000 0.0000 0.1111 0.0000 0.0366 0.2281
21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0026 0.0532
22 0.0000 0.0000 0.0000 0.0000 0.0000 0.2222 0.0000 0.1111 0.1111 0.0000 0.0000 0.0000 0.0000 0.0625 0.3124
23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0028 0.0556
24 0.0000 0.1111 0.0000 0.0000 0.0000 0.0000 0.1111 0.0000 0.0000 0.1111 0.1111 0.0000 0.0000 0.0182 0.1533
25 0.0000 0.1111 0.1111 0.0000 0.1111 0.0000 0.0000 0.0000 0.1111 0.0000 0.0000 0.0000 0.0000 0.0184 0.1541
26 0.0000 0.0000 0.0000 0.1111 0.0000 0.0000 0.0000 0.1111 0.2222 0.1111 0.1111 0.0000 0.0000 0.0009 0.0316
27 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0139 0.1316
28 0.0000 0.0000 0.0000 0.0000 0.0000 0.3333 0.3333 0.3333 0.1111 0.2222 0.0000 0.0000 0.0000 0.0830 0.3710
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0078 0.0960

Fig. 5   DPU-chart for the i-th 
workstation (i = 1)
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respectively a’ and b’, are: a’ = 3.25 ⋅ 10−3 and b’ = 1.52. 
Figure 8 compares the 95% confidence intervals of the 
regression coefficients of the two empirical models (i.e., 
that for the wrapping machines and that for hardness testing 
machines). The confidence intervals of both the regression 
coefficients are comparable as they overlap each other, thus 
indicating that the model developed for wrapping machines 
— Eq. (10) — may also be usable, as a first approximation, 
for different applications pertaining to the electromechani-
cal field.

6 � Conclusions

Identifying suitable statistical process control (SPC) tools to 
control and monitor manufacturing processes is a key aspect 
of many industrial companies. In the modern industry, pro-
duction volume continues to shrink due to the increasing 
customization and complexity of products. As a result, more 

Fig. 6   DPU-chart for the i-th 
workstation (i = 10)

Fig. 7   DPU-chart for the i-th 
workstation (i = 26)

Table 5   Structural complexity 
and defects per unit relevant to 
the workstations of the machine 
head of hardness testing 
machines

WS Ci (min) DPUi

1 1.34 0.0055
2 1.06 0.0050
3 0.58 0.0012
4 0.84 0.0019
5 0.33 0.0005
6 0.60 0.0026
7 1.29 0.0049
8 0.54 0.0015
9 0.38 0.0004
10 1.36 0.0044
11 0.93 0.0026
12 0.12 0.0007
13 0.67 0.0015
14 0.17 0.0005
15 0.94 0.0025
16 0.57 0.0005
17 0.16 0.0009
18 1.02 0.0033
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and more small batches are produced (the so-called low-
volume production). In this context, collecting experimental  
data to implement traditional SPC tools may be time- 
consuming, costly, and challenging. This paper proposes a novel  
DPU-chart based on the use of defect prediction models for 
assembled products.

In contrast to traditional monitoring charts, DPU-charts 
do not require preliminary experimental data in the phase of 
construction of the chart (phase I). Several prediction mod-
els have been developed in the scientific literature to predict 
defects per unit (DPU) occurring in the assembly worksta-
tions. In this research, the model developed by the authors 
in a previous study [9] in the electromechanical field is used 
to predict DPU occurring in each workstation from product 
structural complexity.

The proposed DPU-chart may be particularly beneficial 
when a defect prediction model is available, as it allows to 
avoid the construction of a conventional SPC chart (phase 
I) and to derive control limits directly from product assem-
bly structure knowledge. In particular, through an empirical 
comparison with hardness testing machines assembly, it was 
obtained that the model developed for wrapping machines 
can also be preliminary suitable for other similar applica-
tions in the electromechanical field. Conversely, if a predic-
tive model is not available, it is necessary to evaluate, on a 
case-by-case basis, whether it is more beneficial to adopt 
a conventional SPC chart or to build a new specific defect 
prediction model.

The novel approach to set up the DPU-chart can be of 
great help to improve process monitoring and control espe-
cially in a context of low-volume manufacturing, for which 
implementing phase I would typically take very long time 
to get enough data. As a result, the construction of the chart 
can be significantly accelerated, thus avoiding delaying the 
next monitoring phase. The relevance of this novel paradigm 
is supported by the findings obtained in a real production 

of wrapping machines, showing how the monitoring pro-
cess can be successfully improved. Further research will be 
addressed to explore the use of artificial intelligence (AI) 
techniques to develop reliable defect prediction models that 
can be used as an alternative to the one proposed in this 
study.
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